Topic 6-Coordinate systems in IRⁿ

Def: Let B={Vi, Vz,..., Vr} be a set of r Vectors from TR? • We say that a vector \vec{v} in \mathbb{R}^n is in the span of $\vec{v}_{ij}\vec{v}_{2j}\cdots\vec{v}r$ (or we say in the span of B) if we can ie you can "make" V $\vec{V} = c_1 \vec{V}_1 + c_2 \vec{V}_2 + \dots + c_r \vec{V}_r \neq$ write by scaling and adding the vectors Where CI, Cz,..., Cr are real from B numbers. • The expression $c_1V_1 + c_2V_2 + \dots + c_rV_r$ is called a linear combination of the vectors Vi, Vz, ..., Vr. • If r=1, ie if $\beta=\{\overline{v},\overline{v}\}$ and we

only have one vector, then we have two cases:

Ex: Let V=<1,2> in the vector space R² Let $\beta = \{\vec{v}\}.$ Since B has one non-zero vector v=0 We say that B is a linearly independent set of vectors. What are some vectors in the span of B? $2 \cdot v = 2 \langle 1, 2 \rangle = \langle 2, 4 \rangle$ $-5, \vec{v} = -5\langle 1, 2 \rangle = \langle -5, -10 \rangle$ $\pi \cdot \vec{v} = \pi \langle 1, 2 \rangle = \langle \pi, 2 \pi \rangle$ $-\frac{3}{2}\frac{1}{2} = -\frac{3}{2}\langle 1, 2 \rangle = \langle -\frac{3}{2}, -3 \rangle$ Some vectors in the span of V (or span of B) are: $<2,47,<-5,-107,<\pi,2\pi7,<-\frac{3}{2},-37$ Any multiple of \vec{v} is in the span of \vec{v} .

EX: Consider the rector space IR2. Let $V_1 = \langle 1, 1 \rangle, \ V_2 = \langle 2, 2 \rangle.$ Let $B = \{\vec{v}_1, \vec{v}_2\}$. Q: What are some vectors in the span of B? $2\cdot \vec{v}_1 + 1\cdot \vec{v}_2 = 2\langle 1, 1 \rangle + 1\cdot \langle 2, 2 \rangle = \langle 4, 4 \rangle$ $4 \cdot \vec{v}_1 - 2 \cdot \vec{v}_2 = 4 < 1, 1) - 2 < 2, 2) = < 0, 0 >$ 50, <3,37, <0,07 are in the span of $\beta = \{ \vec{v}_{1}, \vec{v}_{2} \}$. Note that in general a vector in the span of B is of the form: $\zeta_1 v_1 + \zeta_2 v_2 = \zeta_1 < 1, 1 > + \zeta_2 < 2, 2 >$ $= c_1 < 1, 1 > + 2c_2 < 1, 1 >$ $= (c_1 + 2c_2) < 1, 1 >$ Ie the vectors in the span of B= {v, v.}. are just the vectors in the span of V. !

Note that
$$\langle z, z \rangle = 2 \cdot \langle 1, 1 \rangle$$

ie

$$\vec{v}_2 = 2\vec{v}_1$$

Thus, since \vec{v}_2 is in the span of \vec{v}_1
Thus, since \vec{v}_2 is in the span of \vec{v}_1 .
the vectors in \vec{B} are linearly dependent.
the vectors in \vec{B} are linearly dependent.
This is why the span of \vec{F}_1 .
Collapsed to just the span of \vec{v}_1 .
Note: $\vec{v}_2 = 2\vec{v}_1$ can be written $2\vec{v}_1 - 1 \cdot \vec{v}_2 = \vec{0}$
We will use this idea when we give
We will use this idea when we give
another way to check line dep. / line ind.

Ex: Consider the vector space IR?. Let $\vec{i} = \langle 1, 0 \rangle, \vec{j} = \langle 0, 1 \rangle.$ Let $\beta = \{\vec{1}, \vec{j}\}$. Q: What are some vectors in the span of i,j? $3\cdot 1 + 2\cdot \frac{1}{3} = 3 < 1, 0 > + 2 < 0, 1 > = < 3, 2 >$ -え+ 」= - <1,0>+ とくのの= <-1, と> $S_0, \langle 3, 2 \rangle, \langle -1, \frac{1}{2} \rangle$ are in the span of B, ie the span of i, ?. In fact any vector $\vec{v} = \langle a, b \rangle$ is in the span of B because $\vec{V} = \langle \alpha, b \rangle = \langle \alpha, 0 \rangle + \langle 0, b \rangle$ $= \alpha < 1, 0 > + b < 0, 1 >$ = の ご + し ご Thus, the spun of I, j consists of all vectors in IR².

Q: Is B a linearly independent set? Is one of the vectors in the span of the other vector? Let's see. -> -> -> where c is Can we write i= cj where c a scalar? We would need <1,0>= c<0,1> 0r < 1, 0 > = < 0, c >.This would require 1=0! So it's not possible. Can we write $j = c \lambda$? That would require <0,17=c<1,07 which would need <0,1>=<<,0>. This would require 1=0 which From above we see that $\beta = \{i, j\}$ can't happen. is a linearly independent set.

Ex: Consider the vector space
$$\mathbb{TR}^3$$
.
Let $\vec{v}_1 = \langle -1, \circ, 1 \rangle$, $\vec{v}_2 = \langle -5, -3, 2 \rangle$, $\vec{v}_3 = \langle 1, 1, 0 \rangle$.
Then
 $\langle -5, -3, 2 \rangle = 2 \cdot \langle -1, 0, 1 \rangle - 3 \cdot \langle 1, 1, 0 \rangle$
 $\vec{v}_2 = 2 \vec{v}_1 - 3 \vec{v}_3$
So, \vec{v}_2 is in the span of \vec{v}_1 and \vec{v}_3 .
The above tells vs that $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are
linearly dependent. This is because
you can make \vec{v}_2 from scaling ladding
 \vec{v}_1 and \vec{v}_3 .
Note the above equation can be written as:
Note the above equation can be written as:
 $2 \vec{v}_1 - \vec{v}_2 - 3 \vec{v}_3 = \vec{0}$ a linear equation
 $\vec{v}_1 \vec{v}_2 \cdot \vec{v}_3 = \vec{0}$ a linear equation
 $\vec{v}_1 \vec{v}_2 \cdot \vec{v}_3 = \vec{0}$ a linear equation
 $\vec{v}_1 \vec{v}_2 \cdot \vec{v}_3 = \vec{0}$ a linear equation
 $\vec{v}_1 \vec{v}_2 \cdot \vec{v}_3 = \vec{0}$ a linear equation
 $\vec{v}_1 \vec{v}_2 \cdot \vec{v}_3 = \vec{0}$ a linear equation
 $\vec{v}_1 \vec{v}_2 \cdot \vec{v}_3 = \vec{0}$ a linear equation
 $\vec{v}_1 \vec{v}_2 \cdot \vec{v}_3 = \vec{0}$ a linear equation
 $\vec{v}_1 \vec{v}_2 \cdot \vec{v}_3 = \vec{0}$ a linear equation
 $\vec{v}_1 \vec{v}_2 \cdot \vec{v}_3 = \vec{0}$ a linear equation
 $\vec{v}_1 \vec{v}_2 \cdot \vec{v}_3 = \vec{0}$ a linear equation
 $\vec{v}_1 \vec{v}_2 \cdot \vec{v}_3 = \vec{0}$ a linear equation
 $\vec{v}_2 \cdot \vec{v}_3 = \vec{v}_3 = \vec{0}$ a linear equation

Theorem: Consider the vector space Rⁿ.
Let
$$\beta = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_r\}$$

B is a linearly independent set if and
only if the only solution to the equation
 $c_1\vec{v}_1 + c_2\vec{v}_2 + ... + c_r\vec{v}_r = \vec{O}$
is $c_1 = 0, c_2 = 0, ..., c_r = 0$.
If the equation has more solutions
If the vectors are linearly dependent.
then the vectors are linearly dependent.

Ex: Let
$$B = \{\hat{z}, \hat{j}\}$$
 in \mathbb{R}^{2} .
Let's use this theorem to verify
again that B is a linearly independent
set of vectors.
We want to solve
 $c_{1}\hat{z} + c_{2}\hat{j} = \hat{O}$
for c_{1}, c_{2} .
We get $c_{1} < 1_{1}O ? + c_{2} < u_{3}I ? = <0,0?$
Which is $< c_{1,0}O ? + <0, c_{2}? = <0,0?$
This becomes $< c_{1,0}O ? + <0, c_{2}? = <0,0?$
Which is $< c_{1,0}C_{2}? = <0,0?$.
Thus, $c_{1}=0, c_{2}=0$.
Since the only solution to
 $c_{1}\hat{z} + c_{2}\hat{j} = \hat{O}$
is $c_{1}=0, c_{2}=0$ we have
is $c_{1}=0, c_{2}=0$ we have

is ci=0, c2 that B= ₹ijj is a linearly independent set of vectors

Ex: Consider the vector space
$$\mathbb{R}^2$$
.
Let $V = \langle 1, 0 \rangle$, $\overline{W} = \langle -1, 1 \rangle$.
Let $B = \{\overline{V}, \overline{W}\}$.
Is B a lin. ind. or lin. dep. set of vectors?
We need to solve
 $C_1\overline{V} + C_2\overline{W} = \overline{O}$
for $C_{1,0}\overline{C_2}$.
We get
 $C_1 - C_2 - C_2 = \langle 0, 0 \rangle$
which gives
 $C_1 - C_2 = O$
 $C_2 = O$
The only solution to this system is
 $C_1 = O_1 C_2 = O$.
Thus, $\overline{V} = \langle 1, 0 \rangle$, $\overline{W} = \langle -1, 1 \rangle$ are
linearly independent.

Ex: Let
$$\vec{v}_1 = \langle 1, -2, 1 \rangle, \vec{v}_2 = \langle 1, 0, 1 \rangle,$$

 $\vec{v}_3 = \langle 0, 1, 0 \rangle.$
Are these vectors linearly independent
or linearly dependent?
We must solve
 $\vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3 = 0$ (*)

for
$$c_{1}, c_{2}, c_{3}$$
.
We get
 $c_{1} < (j-2), 1 > + c_{2} < (j, 0), 1 > + c_{3} < 0, 1, 0 > = < 0, 0, 0 > 0$
 $< c_{1} + c_{2}, j - 2c_{1} + c_{3}, j < (j + c_{2}) > = < 0, 0, 0 > 0$
This gives the system
 $c_{1} + c_{2} = 0$
 $c_{2} + c_{3} = 0$
 $c_{1} + c_{2} = 0$

This gives

$$C_{1} + C_{2} = 0$$

$$C_{2} + \frac{1}{2}C_{3} = 0$$

$$0 = 0$$

So,

$$c_2 = t$$

 $c_2 = -\frac{1}{2}t$
 $c_1 = \frac{1}{2}t$
Thus plugging this back into (*) above we get
 $\frac{1}{2}tv_1 - \frac{1}{2}tv_2 + tv_3 = 0$

for any
$$t$$
.
For example if $t=2$ we get
 $\vec{v}_1 - \vec{v}_2 + 2\vec{v}_3 = 0$

Thus,
$$\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}$$
 are linearly dependent.
For example,
 $\vec{V}_{1} = \vec{V}_{2} - 2\vec{V}_{3}$
or $\vec{V}_{2} = \vec{V}_{1} + 2\vec{V}_{3}$.
The idea here is that you have
Some redundancies, is you can
some redundancies, is you can

We can use linearly independent vectors to create axes/coordinate systems.

EX: Consider the vector space R?. Let $\vec{\lambda} = \langle 1, 0 \rangle$. The vectors in the span of 2 create the x-axis. And we can label this axic like how we label the real Number line. 27 37 47 57 67 ī -52 -42 -32 -22 -2 Ex: Zi and -4i the vectors are drawn as exampler) that live on the x-axis are of vectors in the ones in the span span of i **d**f

The vector <2,3>=22+33 is drawn, with the parallelogram that makes it. I also labeled a few other vectors. In this example any vector $\vec{v} = \langle q, b \rangle$ can be decomposed into

$$\vec{v} = \langle a, b \rangle = \langle a, o \rangle + \langle o, b \rangle$$

= $a \langle 1, o \rangle + b \langle o, 1 \rangle$
= $a \dot{\lambda} + b \dot{J}$
units
units
ulong + along
 $\ddot{\lambda}$
axis axis.

<u>Pef:</u> Let Vi, Vz, ..., Vn be linearly independent vectors in IR". We use the notation $\beta = [\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n]$ to mean that we have Fixed the ordering of the vectors in our set. We call B a <u>basis</u> (or <u>courdinate system</u>) for IR! If V is in IR" and $\vec{v} = c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_n\vec{v}_n$ then we call cyczyny ca the courdinates of i with respect to B and write $\begin{bmatrix} \vec{v} \end{bmatrix}_{\beta} = \langle c_{1}, c_{2}, \dots, c_{n} \rangle.$

Ex: Let
$$\beta = \begin{bmatrix} \vec{i} & \vec{j} \end{bmatrix}$$
 in \mathbb{R}^2 , where
 $\vec{i} = \langle 1, 0 \rangle$ and $\vec{j} = \langle 0, 1 \rangle$.
We saw earlier that β gives a
linearly independent set.
Thus, since we have 2 linearly independent
vectors in \mathbb{R}^2 we get that β is
a basis for \mathbb{R}^2 .
Let's calculate some coordinates.
Let $\vec{v} = \langle 3, 1 \rangle = \langle 3, 0 \rangle + \langle 0, 1 \rangle$
 $= 3 \cdot \vec{i} + \vec{j}$
Thus, the coordinates for \vec{v} with
respect to β are $[\vec{v}] = \langle 3, 1 \rangle$.
The basis β is called the standard basis
for \mathbb{R}^2 . It is the coordinate
system that we usually use for the
 $xy - \beta lare$.

Ex: In the vector space IR', let $\vec{a} = \langle i, i \rangle$ and $\vec{b} = \langle -i, i \rangle$. We showed previously that these 2 vectors are linearly independent in R². Let $\beta = [\overline{a}, \overline{b}].$ Then B is a basis for IR². Let's draw the coordinate system that B creater. Zatb J= 02 + 06

Note: you draw the grid by drawing each line parallel to the main axis it goes with

The vector
$$\vec{v} = 2\vec{a} - \vec{b} = 2 < |j| - (-|j|)$$

= <3,1?

is drawn.

Ex: Let B = [a,b] be as above where a = <1,1>, b = <-1,1>. Find the coordinates [v]p for v with respect to B. We must solve

 $\vec{v} = c_1 \vec{a} + c_2 \vec{b}$

for
$$C_{1}, C_{2}$$
.
We must solve
 $\langle 5, -1 \rangle = C_{1} \langle 1, 1 \rangle + C_{2} \langle -1, 1 \rangle$

We get
$$\langle 5, -1 \rangle = \langle -1 \rangle - \langle -2 \rangle \langle -1 \rangle \langle -2 \rangle$$

This gives $c_1 - c_2 = 5$ $c_1 + c_2 = -1$ If you solve this system you will get $c_1 = 2, c_2 = -3$. So, $\vec{V} = 2\vec{a} - 3\vec{b}$ Thus, $[\vec{V}]_{\beta} = \langle 2, -3 \rangle$

Note: When we write <x,y> we usually mean the standard basis 2,3 coordinate system. For example <1,27means 1-2+2j That's why we write $[\vec{v}]_{\beta} = \langle a, b \rangle$

to mean the B coordinate system.

Ex: Consider the vector space
$$\mathbb{R}^{5}$$
.
Let $\vec{i} = \langle 1, 0, 0 \rangle$, $\vec{j} = \langle 0, 1, 0 \rangle$, $\vec{k} = \langle 0, 0, 1 \rangle$
In the HW you will show that these
In the HW you will show that these
vectors are linearly independent.
Let $\beta = [\vec{k}, \vec{j}, \vec{k}]$.
Since we have 3 linearly independent vectors
in \mathbb{R}^{3} we get that β is a basis for \mathbb{R}^{3} .
Given a vector $\vec{V} = \langle x, y, z \rangle$ we can write
 $\vec{V} = \langle x, y, z \rangle$
 $= \langle x, y, z \rangle$
 $= \langle x, y, z \rangle$
 $= \langle x, y, z \rangle$.
So, $[\vec{v}]_{\beta} = \langle x, y, z \rangle$.
This is how you can decompose
 \vec{v} into its $\vec{i}, \vec{j}, \vec{j}, \vec{k}$ coordinates
 \vec{v} into its $\vec{i}, \vec{j}, \vec{j}, \vec{k}$.

For example, let
$$\vec{v} = \langle 1, 2, 3 \rangle$$

Then, $\vec{v} = \vec{i} + 2\vec{j} + 3\vec{k}$
So, $[\vec{v}]_{p} = \langle 1, 2, 3 \rangle$

Recall that if
$$\vec{u}$$
 and \vec{v} are vectors
in $|R^2 \circ r |R^3 + b \circ t$
 $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cos(\theta)$
where θ is the angle between the
vectors \vec{u} and \vec{v} .
Therefore, $\theta = 90^\circ \exp(1)$ when
 $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cos(90^\circ) = 0$
 $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cos(90^\circ) = 0$

Using
$$\mathbb{R}^2$$
 and \mathbb{R}^3 as intrition we extend
this idea to any dimension \mathbb{N} .

Def:
We say that two vectors \vec{u} and \vec{v} in
 \mathbb{R}^2 are orthogonal if $\vec{u} \cdot \vec{v} = 0$.

Ex:
$$\vec{a} = \langle 1, 1 \rangle, \vec{b} = \langle -1, 1 \rangle$$
 are
 $irthogonal since$
 $\vec{a} \cdot \vec{b} = (1)(-1) + (1)(1) = 0$

Ex: Let
$$\vec{v} = \langle 1, 0 \rangle, \vec{w} = \langle 1, 1 \rangle.$$

Then, $\vec{v} \cdot \vec{w} = (1)(1) + (0)(1) = 1$
Since $\vec{v} \cdot \vec{w} \neq 0$ the vectors
are not orthogonal.

 $\sqrt{2}$

Def: Let B= [v, v2,...,v] be a basis for IR". · We say that B is an orthogonal basis if every pair of vectors from the basis are orthogonal to each other, that is if $\vec{v}_i \cdot \vec{v}_j = 0$ when $i \neq j$. • We say that B is an <u>orthonormal</u> basis if B is an orthogonal basis and every vector in B has length 1.

Ex: In the vector space
$$\mathbb{R}^2$$

let $\vec{i} = \langle 1, 0 \rangle$, $\vec{j} = \langle 0, 1 \rangle$.
Let $\beta = [\vec{i}, \vec{j}]$.
() We know that β is a
basis for \mathbb{R}^2 .
(2) $\vec{i} \cdot \vec{j} = 0$
 So, \vec{i}, \vec{j} form an
orthogonal basis.

(3)
$$\|\vec{j}\| = \sqrt{1^2 + 0^2} = 1$$

 $\|\vec{j}\| = \sqrt{0^2 + 1^2} = 1$
Thus, \vec{j}, \vec{j} form an orthonormal basis
1 housis

Result: B=[1,] is an orthonormal basis.

Ex: In the vector space
$$\mathbb{R}^2$$
,
let $\vec{a} = \langle 1, 1 \rangle$, $\vec{b} = \langle -1, 1 \rangle$.
Let $\mathcal{B} = [\vec{a}, \vec{b}]$.
(1) We saw earlier that
 \mathcal{B} is a basis for \mathbb{R}^2 .
(2) $\vec{a} \cdot \vec{b} = D$
Thus, \vec{a} and \vec{b} form
an orthogonal basis
(3) $\||\vec{a}\|| = \sqrt{1^2 + 1^2} = \sqrt{2}$
 $\||\vec{b}\|| = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$
The lengths of the
Vectors are not 1
thus \vec{a}, \vec{b} are net
thus \vec{b}, \vec{c} are net
thus \vec{c}, \vec{c} .

Ex: In the vector space
$$\mathbb{R}^{3}$$
,
let $\vec{x} = \langle 1, 0, 0 \rangle$, $\vec{j} = \langle 0, 1, 0 \rangle$, $\vec{k} = \langle 0, 0, 1 \rangle$.
Let $\beta = [\vec{x}, \vec{j}, \vec{k}]$.
(1) In HW you show that β is
a basis for \mathbb{R}^{3} .
(2) $\vec{x} \cdot \vec{j} = 1:0+0.1+0.0=0$
 $\vec{x} \cdot \vec{k} = 1:0+0.0+0.0=0$
 $\vec{z} \cdot \vec{k} = 0.0+1.0+0.0=0$
 $\vec{z} \cdot \vec{k} = 0.0+1.0+0.0=0$
Thus, $\vec{z}, \vec{j}, \vec{j}, \vec{k}$ torm
Thus, $\vec{z}, \vec{j}, \vec{k}$ torm
Thus, $\vec{z}, \vec{k} = 0.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2 + 0^{2} + 1)^{2} = 1$
Thus, $\vec{k} = 1.02 + (2$

Ex: In the vector space
$$[R_{j}^{s}]$$

let $\vec{a} = \langle 1, 0, 0 \rangle$, $\vec{b} = \langle 1, 1, 0 \rangle$, $\vec{c} = \langle 1, 1, 1 \rangle$
() Let's show $\vec{a}_{j}\vec{L}_{j}\vec{c}$ are lin. ind.
Consider
 $c_{1}\vec{a}+c_{2}\vec{b}+\vec{c}_{3}\vec{c}=\vec{0}$
We get
 $c_{1}\langle 1,0,0\rangle + c_{2}\langle 1,1,0\rangle + c_{3}\langle 1,1,1\rangle = \langle 0,0,0\rangle$
 $\langle c_{1}+c_{2}+c_{3}=0$ (i)
 $c_{2}+c_{3}=0$ (ii)
 $c_{2}+c_{3}=0$ (iii)
This gives
This system is already reduced.
Back-substituting gives:
(i) $c_{3}=0$
(iii) $c_{2}=-c_{3}=-(0)=0$
(iii) $c_{1}=-c_{2}-c_{3}=-(0)-(0)=0$
Thus, the only solution to

Let's decompose a vector into this
(vordinate system.
Let
$$\vec{v} = \langle 4, 2, 3 \rangle$$
.
Let's solve
 $\vec{v} = c_1 \vec{a} + c_2 \vec{b} + c_3 \vec{c}$
for c_1, c_2, c_3 .
We get
 $\langle 4, 2, 3 \rangle = c_1 \langle 1, 0, 0 \rangle + c_2 \langle 1, 1, 0 \rangle + c_3 \langle 1, 1, 1 \rangle$
which gives
 $\langle 4, 2, 3 \rangle = \langle c_1 + c_2 + c_3, c_2 + c_3, c_3 \rangle$
Us
 $(z_1 + c_2 + c_3 = 4)$ (i)
 $(z_1 + c_2 + c_3 = 2)$ (ii)
 $(z_3 = 3)$ (iii)
This system is already reduced so we get
We get
 $(iii) c_3 = 3$
 $(iii) c_2 = 2 - c_3 = 2 - 3 = -1)$
 $(ii) c_1 = 4 - c_2 - c_3 = 4 - (-1) - 3 = 2$
Thus, $\vec{v} = 2\vec{a} - \vec{b} + 3\vec{c}$]. So, $[\vec{v}]_{\beta} = \langle 2, -1, 3 \rangle$

Courdinate dot-product theorem
Let
$$\beta = [\vec{v}_1, \vec{v}_2, ..., \vec{v}_n]$$
 be an orthogonal
basis (coordinate system) in \mathbb{R}^n .
Let \vec{v} be any vector in \mathbb{R}^n .
Then,
 $\vec{v} = \overrightarrow{v} \cdot \vec{v}_1$
 $\vec{v}_1 = \vec{v} \cdot \vec{v}_1$

Note: This theorem only works for orthogonal or orthonormal coordinate systems Ex: In IR^2 , let $B = [\vec{\lambda}, \vec{j}]$ We saw that B is an orthonormal busis for IR^2 .

Let's decompose
$$\vec{v} = \langle 3, -6 \rangle$$
 in terms
of this basis.
We want to solve
 $\vec{v} = c_1 \vec{\lambda} + c_2 \vec{j}$
The coordinate dot product theorem
tells us that
 $c_1 = \vec{v} \cdot \vec{\lambda} = \langle 3, -6 \rangle \cdot \langle 1, \circ \rangle = 3 \cdot 1 - 6 \cdot 0 = 3$
 $c_2 = \vec{v} \cdot \vec{j} = \langle 3, -6 \rangle \cdot \langle 0, 1 \rangle = 3 \cdot 0 - 6 \cdot 1 = -6$

Thus, $\vec{z} = 3\vec{z} - 6\vec{z}$

EX: In
$$\mathbb{R}^2$$
, let $\beta = [\vec{a}, \vec{b}]$ where
 $\vec{a} = \langle 1, 1 \rangle$, $\vec{b} = \langle -1, 1 \rangle$.
We saw that β is an urthogonal basic.
Let $\vec{v} = \langle 5, -1 \rangle$.
Let's find \vec{v} 's β -courdinates.
We want to solve
 $\vec{v} = c_1 \vec{a} + c_2 \vec{b}$
By the coordinate dot product theorem
 $c_1 = \frac{\vec{v} \cdot \vec{a}}{||\vec{a}||^2} = \frac{\langle 5, -1 \rangle \cdot \langle 1, 1 \rangle}{(\sqrt{1^2 + 1^2})^2} = \frac{5 - 1}{2} = 2$
and
 $c_2 = \frac{\vec{v} \cdot \vec{b}}{||\vec{b}||^2} = \frac{\langle 5, -1 \rangle \cdot \langle -1, 1 \rangle}{(\sqrt{(-1)^2 + 1^2})^2} = \frac{-5 - 1}{2} = -3$
Thus,
 $\vec{v} = 2 \vec{a} - 3 \vec{b}$
Check:
 $2\vec{a} - 3\vec{b} = 2\langle 1, 1 \rangle - 3\langle -1, 1 \rangle = \langle 5, -1 \rangle = \vec{v}$

~

How to turn an orthogonal basis
into an orthonormal basis
Let
$$\beta = [\vec{v}_{1,1}\vec{v}_{2,1}...,\vec{v}_n]$$
 be an orthogonal
basis for \mathbb{R}^n .
Then,
 $\beta' = [\frac{1}{||\vec{v}_1||} \vec{v}_{1,1} \frac{1}{||\vec{v}_2||} \vec{v}_{2,1}..., \frac{1}{||\vec{v}_n||} \vec{v}_n]$ divide
each
vector
by its
length
will be an orthonormal basis

Let's decompose
$$\vec{V} = \langle 5, -1 \rangle$$
 in terms
of this new basis \vec{B}' .
We want to solve
 $\vec{V} = c_1 \vec{c} + c_2 \vec{d}$
By the coordinate dot product theorem
We get
 $c_1 = \vec{V} \cdot \vec{c} = \langle 5, -1 \rangle \cdot \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle = \frac{4}{\sqrt{2}} = 2\sqrt{2}$
 $c_2 = \vec{V} \cdot \vec{d} = \langle 5, -1 \rangle \cdot \langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle = -\frac{6}{\sqrt{2}} = -3\sqrt{2}$

$$S_{0},$$

 $\vec{v} = 2\sqrt{2}\vec{c} - 3\sqrt{2}\vec{d}.$

$$\frac{check:}{2\sqrt{2} c^2 - 3\sqrt{2} d} = 2\sqrt{2} \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle - 3\sqrt{2} \langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$$
$$= \langle 2, 2 \rangle + \langle 3, -3 \rangle$$
$$= \langle 5, -17 = \vec{v}$$
$$Thvs, [\vec{v}]_{\beta'} = [2\sqrt{2}, -3\sqrt{2}]. \quad \begin{array}{c} \text{Recall before} \\ \text{that} = \langle 2, 3 \rangle \\ \text{that}$$

Def: The standard basis for
$$\mathbb{R}^n$$

is $\beta = [\vec{e_1}, \vec{e_2}, ..., \vec{e_n}]$ where
 $\vec{e_1}$ has a 1 in spot i and O's everywhere
else.

\mathbb{R}^{n}	standard busis
\mathbb{R}^{2}	$\begin{pmatrix} l \\ o \end{pmatrix}, \begin{pmatrix} o \\ l \end{pmatrix}$
\mathbb{R}^{3}	$ \begin{pmatrix} l \\ o \\ o \end{pmatrix} \begin{pmatrix} o \\ l \\ o \end{pmatrix} \begin{pmatrix} o \\ l \\ o \end{pmatrix} \begin{pmatrix} o \\ o \\ l \end{pmatrix} $
\mathbb{R}^4	$ \begin{pmatrix} l \\ o \\ o \\ o \\ v \end{pmatrix} \int \begin{pmatrix} o \\ l \\ o \\ o \end{pmatrix} \int \begin{pmatrix} 0 \\ o \\ l \\ 0 \end{pmatrix} \int \begin{pmatrix} 0 \\ o \\ l \\ 0 \end{pmatrix} = \int \begin{pmatrix} 0 \\ o \\ 0 \\ l \\ 0 \end{pmatrix} $
•	,

Note: When we write a vector
$$\vec{v}$$
 in \mathbb{R}^n
We always write the standard
busis coordinates. To change coordinates
we write $[\vec{v}]_{\vec{p}}$.
For example, in \mathbb{R}^n , $\vec{v} = \begin{pmatrix} 3\\ -1 \end{pmatrix}$ means
 $\vec{v} = 3\begin{pmatrix} 1\\ 0 \end{pmatrix} - \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix} + 5\begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}$.
But if $p = [\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} + 5\begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix} + (\frac{1}{1})]$ then
 $[\vec{v}]_{\vec{p}} = \begin{pmatrix} 3\\ -1\\ 5 \end{pmatrix}$ means that
 $\vec{v} = 3\begin{pmatrix} 0\\ 0\\ -1 \end{pmatrix} - \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} + 5\begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} = \begin{pmatrix} 7\\ -1\\ 5 \end{pmatrix}$
converting back
to standard
coordinates